Wyrażenia algebraiczne

Jednomiany. 1.01
poziom: łatwy

Jednomian po uporządkowaniu przyjmie postać

Jednomiany. 1.02
poziom: łatwy

Dane są trzy pary jednomianów: a) i b) i c) i Jednomiany podobne są w parach

Jednomiany. 1.03
poziom: łatwy

Wartość jednomianu dla i jest równa

Jednomiany. 1.04
poziom: łatwy

a) b) c) d) Spośród powyższych jednomianów do jednomianu podobne są


Wyrażenia algebraiczne. 2.02
poziom: łatwy

Pierwiastek kwadratowy z iloczynu sumy zmiennych i i ich różnicy to w postaci wyrażenia algebraicznego:

Wyrażenia algebraiczne. 2.04
poziom: łatwy

Wartość wyrażenia algebraicznego dla i wynosi


Sumy algebraiczne. 3.01
poziom: łatwy

Po przeprowadzeniu redukcji wyrazów podobnych wyrażenie ma postać

Sumy algebraiczne. 3.02
poziom: średni

Dane są trzy wielomiany,,. jest równy

Sumy algebraiczne. 3.03
poziom: łatwy

Wynikiem działań na sumach algebraicznych jest

Sumy algebraiczne. 3.04
poziom: łatwy

Mnożenie daje wynik


Wzory skróconego mnożenia. 4.01
poziom: łatwy

to po podniesieniu do kwadratu

Wzory skróconego mnożenia. 4.04
poziom: łatwy

Wyrażenie jest równe

Wzory skróconego mnożenia. 4.05
poziom: łatwy

Sumę można zapisać jako

Wzory skróconego mnożenia. 4.06
poziom: łatwy

Wyrażenie można zapisać jako

Wzory skróconego mnożenia. 4.07
poziom: łatwy

Wyrażenie można zapisać w postaci:


Wielomiany. 5.01
poziom: łatwy

Stopień wielomianu wynosi

Wielomiany. 5.02
poziom: łatwy

Wyraz wolny wielomianu wynosi

Wielomiany. 5.03
poziom: łatwy

Suma współczynników wielomianu wynosi

Wielomiany. 5.04
poziom: łatwy

Wynikiem działania jest

Wielomiany. 5.05
poziom: łatwy

Wielomiany oraz są identyczne dla równego

Wielomiany. 5.06
poziom: łatwy

Warunki i spełnia wielomian


Rozkład na czynniki. 6.01
poziom: łatwy

Wielomian można rozłożyć na czynniki

Rozkład na czynniki. 6.02
poziom: łatwy

Wielomian po rozkładzie na czynniki może mieć postać

Rozkład na czynniki. 6.03
poziom: łatwy

Wielomian po rozkładzie na czynniki może mieć postać

Rozkład na czynniki. 6.04
poziom: łatwy

Wielomian po rozkładzie na czynniki może mieć postać

Rozkład na czynniki. 6.05
poziom: średni

Wyrażenie po rozkładzie na czynniki ma postać:

Rozkład na czynniki. 6.06
poziom: łatwy

Wyrażenie po rozkładzie na czynniki ma postać:


Wyrażenia wymierne. 7.01
poziom: łatwy

Dziedziną wyrażenia wymiernego jest

Wyrażenia wymierne. 7.02
poziom: łatwy

Dziedziną wyrażenia wymiernego jest

Wyrażenia wymierne. 7.03
poziom: łatwy

Wartość wyrażenia wymiernego dla wynosi

Wyrażenia wymierne. 7.04
poziom: łatwy

Suma wyrażeń wymiernych i wynosi


Przekształcanie wzorów. 8.01
poziom: łatwy

Z wzoru wyznaczamy. Wynik to

Przekształcanie wzorów. 8.02
poziom: łatwy

Z wzoru wyznaczamy. Wynik to

Przekształcanie wzorów. 8.03
poziom: łatwy

Z wzoru wyznaczamy. Wynik to

Przekształcanie wzorów. 8.04
poziom: łatwy

Z wzoru wyznaczamy. Wynik to

Strona używa plików cookies. Pozostając tutaj zgadzasz się na ich wykorzystywanie. Zmian możesz dokonać w ustawieniach swojej przeglądarki internetowej.
Polityka prywatności | Polityka cookies